1. A company stock is worth $5.00. For two weeks its value rises by 8% every day. What is the value of the stock after two weeks?

\[y = a(b)^x \]
\[y = 5 \cdot (1 + 0.08)^x \]
\[y = 5 \cdot (1.08)^x \]

2 weeks = 14 days
\[y = 5 \cdot (1.08)^{14} \]
\[y = 14.606 \]

Value of stock is $14.606 after two weeks.

2. The value of a $1500 computer decrease by 25% every year. How long does it take for the computer to be worth $300?

\[y = a(b)^x \]
\[y = 1500 \cdot (1 - 0.25)^x \]
\[y = 1500 \cdot (0.75)^x \]

300 = 1500 \cdot (0.75)^x

0.2 = (0.75)^x \quad \rightarrow \quad \text{cannot find common base,}
\[
\log(0.2) = \log(0.75)^x \quad \text{have to use } \frac{\log 0.2}{\log 0.75}
\]
\[\log(0.2) = x \cdot \log(0.75) \]
\[5.6 = \frac{\log(0.2)}{\log(0.75)} \]

It will take 5.6 years for computer to be worth $300.
3. The rate of deforestation in the Amazon is decreasing exponentially. In two years, it is expected that only 15,000 km2 will be deforested. In five years, the amount deforested should only be 8,000 km2. Given this information, what level of deforestation can be expected in ten years?

NO "a"!

\[y = a(c)^x \]
\[(2, 15000) \]
\[15000 = a(c)^2 \]
\[y = a(c)^x \]
\[(5, 8000) \]
\[8000 = a(c)^5 \]

\[\frac{8000}{15000} = a(c)^{\frac{5}{2}} \]
\[\frac{8}{15} = c^{\frac{5}{2}} \]
\[\left(\frac{8}{15} \right)^{\frac{1}{3}} = c^{\frac{5}{2} \times \frac{1}{3}} \]
\[0.81 = c \]

\[y = a(0.81)^x \]
\[(2, 15000) \]
\[15000 = a(0.81)^2 \]
\[15000 = 0.6561a \]
\[22862 = a \]

\[y = 22862(0.81)^x \]
\[x = 10 \text{ years} \]
\[y = 22862(0.81)^{10} \]
\[y = 2779 \]

In ten years, the level of deforestation will be 2779 km2.